The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym).

نویسندگان

  • Andrew R Giordano
  • Benjamin J Ridenhour
  • Andrew Storfer
چکیده

A primary goal of molecular ecology is to understand the influence of abiotic factors on the spatial distribution of genetic variation. Features including altitudinal clines, topography and landscape characteristics affect the proportion of suitable habitat, influence dispersal patterns, and ultimately structure genetic differentiation among populations. We studied the effects of altitude and topography on genetic variation of long-toed salamanders (Ambystoma macrodactylum), a geographically widespread amphibian species throughout northwestern North America. We focused on 10 low altitude sites (< 1200 m) and 11 high-altitude sites in northwestern Montana and determined multilocus genotypes for 549 individuals using seven microsatellite loci. We tested four hypotheses: (1) gene flow is limited between high- and low-altitude sites; and, (2) gene flow is limited among high-altitude sites due to harsh habitat and extreme topographical relief between sites; (3) low-altitude sites exhibit higher among-site gene flow due to frequent flooding events and low altitudinal relief; and (4) there is a negative correlation between altitude and genetic variation. Overall F(ST) values were moderate (0.08611; P < 0.001). Pairwise F(ST) estimates between high and low populations and a population graphing method supported the hypothesis that low-altitude and high-altitude sites, taken together, are genetically differentiated from each other. Also as predicted, gene flow is more prominent among low-altitude sites than high-altitude sites; low-altitude sites had a significantly lower F(ST) (0.03995; P < 0.001) than high altitude sites (F(ST) = 0.10271; P < 0.001). Use of Bayesian analysis of population structure (BAPS) resulted in delineation of 10 genetic groups, two among low-altitude populations and eight among high-altitude populations. In addition, within high altitude populations, basin-level genetic structuring was apparent. A nonequilibrium algorithm for detecting current migration rates supported these population distinctions. Finally, we also found a significant negative correlation between genetic diversity and altitude. These results are consistent with the hypothesis that topography and altitudinal gradients shape the spatial distribution of genetic variation in a species with a broad geographical range and diverse life history. Our study sheds light on which key factors limit dispersal and ultimately species' distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large geographic range size reflects a patchwork of divergent lineages in the long-toed salamander (Ambystoma macrodactylum).

For northern taxa, persistence in multiple vs. single Pleistocene refugia may have been an important determinant of contemporary range size, with larger ranges achieved by species that colonized the north from several glacial refugia. Under this hypothesis, widespread species are expected to demonstrate marked phylogeographic structure in previously glaciated regions. We use a genome-wide surve...

متن کامل

Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time.

Quantifying the influence of the landscape on the genetic structure of natural populations remains an important empirical challenge, particularly for poorly studied, ecologically cryptic species. We conducted an extensive microsatellite analysis to examine the population genetics of the southern long-toed salamander (Ambystoma macrodactylum sigillatum) in a naturally complex landscape. Using sp...

متن کامل

Role of habitat complexity in predator–prey dynamics between an introduced fish and larval Long-toed Salamanders (Ambystoma macrodactylum)

Predation by nonnative fishes has reduced abundance and increased extinction risk for amphibian populations worldwide. Although rare, fish and palatable amphibians have been observed to coexist where aquatic vegetation and structural complexity provide suitable refugia. We examined whether larval Long-toed Salamanders (Ambystoma macrodactylum Baird, 1850) increased use of vegetation cover in la...

متن کامل

Effects of atrazine and iridovirus infection on survival and life-history traits of the long-toed salamander (Ambystoma macrodactylum).

Environmental contaminants and emerging infectious diseases are implicated as factors contributing to global amphibian declines. However, few studies have tested the interaction of these factors. We exposed six-week-old, larval long-toed salamanders (Ambystoma macrodactylum) to Ambystoma tigrinum virus (ATV; 0 or 10(3.5) plaque-forming units/ml) and sublethal concentrations of atrazine (0, 1.84...

متن کامل

Quantification and reduction of bias from sampling larvae to infer population and landscape genetic structure.

A well-designed sampling scheme is critical for obtaining accurate results from population genetic studies. Larval samples contain only the genetic material of successful breeders, often of a single year, and may be biased towards particular families. To quantify the bias of using larval samples to infer population and landscape genetic structure and explore how this bias may be reduced using s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular ecology

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 2007